login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276413 Non-repdigit numbers k that divide A045876(k). 1
370, 407, 481, 518, 592, 629, 2727, 13008, 14634, 16260, 19512, 22764, 29268, 39024, 87804, 101010, 102564, 103896, 104895, 105820, 108262, 109890, 113960, 115830, 116883, 124740, 125356, 125874, 126984, 128205, 129870, 132275, 134680, 135135, 136752 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A161020 is a subsequence.

LINKS

Robert Israel, Table of n, a(n) for n = 1..373

EXAMPLE

2727 is a term because 2277 + 2727 + 2772 + 7227 + 7272 + 7722 = 29997 is divisible by 2727.

MAPLE

filter:= proc(x) local L, D, n, M, s, j;

  L:= convert(x, base, 10);

  D:= [seq(numboccur(j, L), j=0..9)];

  if numboccur(0, D) = 9 then return false fi;

  n:= nops(L);

  M:= n!/mul(d!, d=D);

    s:= add(j*D[j+1], j=0..9);

  evalb(((10^n-1)*M/9/n*s) mod x = 0)

end proc:

select(filter, [$1..2*10^5]); # Robert Israel, Sep 12 2016

PROG

(PARI) A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);

A055642(n) = #Str(n);

A007953(n) = sumdigits(n);

A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));

isA010785(n) = {1==#Set(digits(n))}

lista(nn) = for(n=1, nn, if(A045876(n) % n == 0 && !isA010785(n), print1(n", ")));

CROSSREFS

Cf. A161020, A045876.

Sequence in context: A255194 A108772 A224562 * A161020 A102618 A225104

Adjacent sequences:  A276410 A276411 A276412 * A276414 A276415 A276416

KEYWORD

nonn,base

AUTHOR

Altug Alkan, Sep 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 22:12 EST 2022. Contains 350376 sequences. (Running on oeis4.)