login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254939
a(n) = (A099795(n)^-1 mod p)*A099795(n), where p = prime(n).
3
1, 4, 36, 120, 2520, 277200, 5045040, 183783600, 4655851200, 80313433200, 32607253879200, 2743667504978400, 58772246027695200, 5038384364010597600, 56517528952814529600, 34089489546705963770400, 7391221142626702144764000
OFFSET
1,2
COMMENTS
The sequence lists the smallest nonnegative solutions z to the system of congruences z == 1 (mod p), z == 0 (mod v(p-1)), where p is a prime and v(p-1) = lcm(1,...,p-1).
LINKS
Umberto Cerruti, Il Teorema Cinese dei Resti (in Italian), 2015. The sequence is on page 21.
Eric Weisstein's World of Mathematics, Modular Inverse.
FORMULA
a(n) = A255010(n)*A099795(n).
EXAMPLE
5045040 is the seventh term of the sequence because the modular inverse of A099795(7) mod A000040(7) is 7 and 7*A099795(7) = 7*720720 = 5045040.
MAPLE
with(numtheory): P:=proc(q) local a, n; a:=[];
for n from 1 to q do a:=[op(a), n]; if isprime(n+1) then
print(lcm(op(a))*(lcm(op(a))^(-1) mod (n+1))); fi;
od; end: P(10^3); # Paolo P. Lava, Feb 16 2015
MATHEMATICA
r[k_] := LCM @@ Range[k]; u[k_] := PowerMod[r[k - 1], -1, k] r[k - 1]; Table[u[Prime[n]], {n, 1, 20}]
PROG
(Magma) [Modinv(Lcm([1..p-1]), p)*Lcm([1..p-1]): p in PrimesUpTo(60)];
(PARI) a099795(n) = lcm(vector(prime(n)-1, k, k));
a(n) = {my(m = a099795(n)); m*lift(1/Mod(m, prime(n))); } \\ Michel Marcus, Feb 13 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Bruno Berselli, Feb 12 2015 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)
STATUS
approved