login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254692
Number of length n+4 0..2 arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms
1
133, 267, 552, 1140, 2310, 4542, 9106, 18498, 37742, 77010, 156546, 318427, 649407, 1326877, 2713484, 5550992, 11360343, 23266909, 47691587, 97820467, 200754359, 412222139, 846895302, 1740851986, 3580251228, 7366679989, 15164514943
OFFSET
1,1
COMMENTS
Column 2 of A254698
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -6*a(n-4) +26*a(n-5) -43*a(n-6) +21*a(n-7) -55*a(n-8) +59*a(n-9) -217*a(n-10) +185*a(n-11) -38*a(n-12) +350*a(n-13) -150*a(n-14) +899*a(n-15) -152*a(n-16) +101*a(n-17) -1001*a(n-18) -108*a(n-19) -2159*a(n-20) -958*a(n-21) -492*a(n-22) +1151*a(n-23) +783*a(n-24) +3028*a(n-25) +2869*a(n-26) +1191*a(n-27) -124*a(n-28) -1084*a(n-29) -2384*a(n-30) -3108*a(n-31) -1346*a(n-32) -484*a(n-33) +650*a(n-34) +1038*a(n-35) +1603*a(n-36) +792*a(n-37) +200*a(n-38) -166*a(n-39) -262*a(n-40) -472*a(n-41) -236*a(n-42) +8*a(n-43) -64*a(n-44) +64*a(n-45) +64*a(n-46) +48*a(n-47) +32*a(n-49)
EXAMPLE
Some solutions for n=10
..2....2....0....0....1....0....1....2....0....2....1....1....1....2....2....1
..1....0....1....1....2....0....0....0....0....1....1....0....0....2....1....1
..2....0....0....2....0....2....1....1....0....0....2....1....1....1....1....2
..1....0....0....1....1....0....1....1....1....2....1....1....2....1....1....0
..0....0....0....2....1....0....2....2....0....1....1....1....1....1....2....2
..1....0....2....1....2....0....1....1....0....2....1....1....2....1....1....1
..1....0....0....1....1....2....2....2....0....1....1....0....0....2....2....1
..1....2....0....2....1....0....1....0....0....1....2....1....1....0....1....2
..1....1....0....0....2....0....1....1....0....1....1....2....1....2....1....1
..1....0....2....2....1....0....0....2....2....1....1....1....1....1....2....1
..0....0....0....1....1....0....2....1....1....1....1....1....1....1....1....1
..1....0....1....1....2....2....1....1....0....1....2....1....2....2....1....1
..2....1....0....2....0....0....1....0....0....2....0....2....1....0....0....0
..1....2....0....1....2....0....1....1....0....2....1....1....1....2....1....2
CROSSREFS
Sequence in context: A123997 A316630 A250766 * A050882 A146233 A146181
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 05 2015
STATUS
approved