login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254690
Number of decompositions of 2n into a sum of two primes p1 < p2 such that p2-p1 is between a pair of sexy primes.
1
0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 3, 2, 3, 5, 4, 2, 5, 2, 3, 5, 2, 4, 6, 2, 5, 6, 3, 4, 6, 4, 3, 7, 2, 3, 8, 3, 4, 6, 2, 5, 7, 3, 3, 7, 5, 5, 8, 4, 3, 9, 2, 4, 8, 2, 5, 7, 2, 2, 4, 6, 5, 7, 4, 2, 10, 2, 4, 7, 1, 6, 7, 1, 4, 10, 7, 3, 8
OFFSET
1,8
COMMENTS
"A pair of sexy primes" is defined as two primes p_a < p_b such that p_b = p_a + 6, with p_a from A023201. See the Weisstein link.
The restriction is therefore p_a < p2 - p1 < p_a + 6 for p_a from A023201.
Conjecture: when n>=7, a(n)>0.
The products of sexy prime pairs are listed in A111192.
LINKS
Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- N. J. A. Sloane, Mar 07 2021].
Lei Zhou, Plot of a(n) for n <= 20000.
EXAMPLE
n=7, 2n=14=3+11. 11-3=8, 5<8<11 where {5, 11} is a pair of sexy primes. So a(7)=1.
n=8, 2n=16=3+13=5+11. 13-3=10, 5<10<11; 11-5=6, 5<6<11, where {5, 11} is a pair of sexy primes: two cases found, so a(8)=2.
n=17, 2n=34=3+31=5+29=11+23. 31-3=28, 23<28<29; 29-5=24, 23<24<29; 23-11=12, 7<12<13; where {23,29} and {7,13} are sexy prime pairs: three cases found, so a(17)=3.
MATHEMATICA
Table[e = 2 n; ct = 0; p1 = 1; While[p1 = NextPrime[p1]; p1 < n, p2 = e - p1; If[PrimeQ[p2], c = p2 - p1; If[c >= 6, found = 0; Do[If[PrimeQ[c - i] && PrimeQ[c + 6 - i], found = 1], {i, 1, 5, 2}]; If[found == 1, ct++]]]]; ct, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lei Zhou, Feb 05 2015
EXTENSIONS
Edited by Wolfdieter Lang, Feb 20 2015
STATUS
approved