login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254320
Numbers k such that the reversal of phi(k) is sigma(k)-k.
1
2, 11, 101, 735, 7665, 11505, 16459, 64578, 378871, 541033, 3440409, 5639353, 5230000213, 5762782573, 5828558173, 8130408803, 8275586723, 9738107377, 11263073973, 37057275961, 38914628453, 58285958173, 231243884637, 350649946051, 380047486211, 516420024613, 547083380743, 576216622573
OFFSET
1,1
EXAMPLE
sigma(2) - 2 = 1; rev(1) = 1 = phi(2).
sigma(735) - 735 = 633; rev(633) = 336 = phi(735).
MAPLE
with(numtheory):T:=proc(w) local x, y, z; x:=w; y:=0;
for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
P:=proc(q) local n; for n from 1 to q do
if T(phi(n))=sigma(n)-n then print(n); fi; od; end: P(10^7);
MATHEMATICA
Select[Range[564*10^4], IntegerReverse[EulerPhi[#]]==DivisorSigma[1, #]-#&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jul 03 2024 *)
PROG
(PARI) rev(n) = subst(Polrev(digits(n)), x, 10);
isok(n) = (sigma(n)-n) == rev(eulerphi(n)); \\ Michel Marcus, Jan 29 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jan 28 2015
EXTENSIONS
a(12) from Michel Marcus, Jan 29 2015
a(13)-a(28) from Giovanni Resta, May 08 2015
STATUS
approved