login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254039
Primes p such that (p^3 + 2)/3, (p^5 + 2)/3 and (p^7 + 2)/3 are prime.
1
524521, 1090891, 1383391, 2633509, 3371059, 4872331, 7304131, 7756669, 8819119, 8877331, 11536471, 12290851, 13362211, 13509649, 14658499, 15359401, 17094151, 17582329, 18191179, 18550891, 19416259, 20465209, 21971629, 22519531, 22619431, 25972561, 27155881, 29281699
OFFSET
1,1
COMMENTS
All the terms in this sequence are 1 mod 9.
LINKS
EXAMPLE
a(1) = 524521;
(524521^3 + 2)/3 = 48102471044890921;
(524521^5 + 2)/3 = 13234061480615091039311002201;
(524521^7 + 2)/3 = 3640985160809159281478976663465873196681;
all four are prime.
MATHEMATICA
Select[Prime[Range[10^7]], PrimeQ[(#^3 + 2)/3] && PrimeQ[(#^5 + 2)/3] && PrimeQ[(#^7 + 2)/3] &]
PROG
(PARI) is(n)=n%9==1 && isprime(n) && isprime((n^3+2)/3) && isprime((n^5+2)/3) && isprime((n^7+2)/3) \\ Charles R Greathouse IV, Jan 23 2015
(Magma) [p: p in PrimesInInterval(3, 10000000) | IsPrime((p^3 + 2) div 3) and IsPrime((p^5 + 2) div 3) and IsPrime((p^7 + 2) div 3)]; // Vincenzo Librandi, Mar 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 23 2015
STATUS
approved