login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254038
Prime numbers n such that replacing each digit d in the decimal expansion of n with prime(d) produces a square. Zeros are not allowed.
0
13, 113, 6113, 33113, 93113, 123113, 18237113, 644312113, 749676113, 1222457113, 1346384113, 2343264113, 3282836113, 3959424113, 4412442113, 6241338113, 8932217113, 9165131113, 12165131113, 14198291113, 16224432113, 26199212113, 31259424113, 38785631113, 39232638113
OFFSET
1,1
COMMENTS
a(1)==13(mod 100) and a(n)==113(mod 1000) for n>1.
The corresponding squares are 25, 225, 13225, 55225, 235225, 235225, 2193517225, 1377523225, 17723131713225, 233371117225, 257135197225, 35753137225, ...
EXAMPLE
6113 is in the sequence because 6113 becomes 13225 = 115^2, where 13225 is the concatenation (prime(6),prime(1),prime(1),prime(3))=(13,2,2,5).
MATHEMATICA
f[n_]:=Block[{a=IntegerDigits[n], b="", k=1, l}, l=Length[a]; While[k<l+1, b=StringJoin[b, ToString[Prime[a[[k]]]]]; k++]; ToExpression[b]]; Do[If[IntegerQ[Sqrt[f[Prime[n]]]], Print[Prime[n]]], {n, 1, 10^8}]
pnsQ[n_]:=Module[{c=FromDigits[Flatten[IntegerDigits/@Prime[ IntegerDigits[ n]]]]}, DigitCount[ c, 10, 0]==0&&IntegerQ[Sqrt[c]]]; Join[{13}, Select[ Range[113, 39232639000, 1000], PrimeQ[#]&&pnsQ[#]&]]//Quiet (* Harvey P. Dale, Apr 13 2019 *)
CROSSREFS
Sequence in context: A089569 A048383 A230377 * A221369 A320213 A323037
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jan 23 2015
STATUS
approved