login
A253608
The binary representation of a(n) is the concatenation of n and the binary complement of n, A035327(n).
3
2, 9, 12, 35, 42, 49, 56, 135, 150, 165, 180, 195, 210, 225, 240, 527, 558, 589, 620, 651, 682, 713, 744, 775, 806, 837, 868, 899, 930, 961, 992, 2079, 2142, 2205, 2268, 2331, 2394, 2457, 2520, 2583, 2646, 2709, 2772, 2835, 2898, 2961, 3024, 3087, 3150, 3213
OFFSET
1,1
LINKS
FORMULA
a(n) = (n+1) * (2^BL(n) - 1), where BL(n) is the binary length of n.
MAPLE
a:= n-> (n+1)*(2^(ilog2(n)+1)-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jan 08 2015
MATHEMATICA
Array[(# + 1) (2^(Floor@ Log2[#] + 1) - 1) &, 50] (* Michael De Vlieger, Oct 13 2018 *)
PROG
(Python)
for n in range(1, 333):
print(str((n+1)*(2 ** int.bit_length(int(n))-1)), end=', ')
(PARI) a(n) = (n+1)*(2^#binary(n)-1); \\ Michel Marcus, Jan 08 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Alex Ratushnyak, Jan 05 2015
STATUS
approved