login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253608
The binary representation of a(n) is the concatenation of n and the binary complement of n, A035327(n).
3
2, 9, 12, 35, 42, 49, 56, 135, 150, 165, 180, 195, 210, 225, 240, 527, 558, 589, 620, 651, 682, 713, 744, 775, 806, 837, 868, 899, 930, 961, 992, 2079, 2142, 2205, 2268, 2331, 2394, 2457, 2520, 2583, 2646, 2709, 2772, 2835, 2898, 2961, 3024, 3087, 3150, 3213
OFFSET
1,1
LINKS
FORMULA
a(n) = (n+1) * (2^BL(n) - 1), where BL(n) is the binary length of n.
MAPLE
a:= n-> (n+1)*(2^(ilog2(n)+1)-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jan 08 2015
MATHEMATICA
Array[(# + 1) (2^(Floor@ Log2[#] + 1) - 1) &, 50] (* Michael De Vlieger, Oct 13 2018 *)
PROG
(Python)
for n in range(1, 333):
print(str((n+1)*(2 ** int.bit_length(int(n))-1)), end=', ')
(PARI) a(n) = (n+1)*(2^#binary(n)-1); \\ Michel Marcus, Jan 08 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Alex Ratushnyak, Jan 05 2015
STATUS
approved