login
A253605
Primes p such that the polynomial x^2 + x + p generates only primes for x=1..13.
1
17, 41, 27649987598537, 30431463129071, 58326356511581, 161966446726157, 291598227841757
OFFSET
1,1
PROG
(PARI) isok(p) = {for (n=1, 13, if (! isprime(subst(x^2+x+p, x, n)), return (0)); ); 1; } \\ Michel Marcus, Jan 13 2015
(Perl) use ntheory qw(:all); local $| = 1; my $lo = 2; my $hi = 2*$lo; while (1) { print "$_, " for sieve_prime_cluster($lo, $hi, map { $_*($_+1) } 1..13); $lo = $hi+1; $hi = 2*$lo } # Daniel Suteu, Dec 22 2024
CROSSREFS
Subsequence of A253592 and A191458. Cf. A164926.
Sequence in context: A191457 A191458 A253592 * A044094 A044475 A024188
KEYWORD
nonn,more
AUTHOR
Zak Seidov, Jan 05 2015
EXTENSIONS
a(5)-a(7) from Daniel Suteu, Dec 22 2024
STATUS
approved