login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253605
Primes p such that the polynomial x^2 + x + p generates only primes for x=1..13.
1
17, 41, 27649987598537, 30431463129071, 58326356511581, 161966446726157, 291598227841757
OFFSET
1,1
PROG
(PARI) isok(p) = {for (n=1, 13, if (! isprime(subst(x^2+x+p, x, n)), return (0)); ); 1; } \\ Michel Marcus, Jan 13 2015
(Perl) use ntheory qw(:all); local $| = 1; my $lo = 2; my $hi = 2*$lo; while (1) { print "$_, " for sieve_prime_cluster($lo, $hi, map { $_*($_+1) } 1..13); $lo = $hi+1; $hi = 2*$lo } # Daniel Suteu, Dec 22 2024
CROSSREFS
Subsequence of A253592 and A191458. Cf. A164926.
Sequence in context: A191457 A191458 A253592 * A044094 A044475 A024188
KEYWORD
nonn,more,changed
AUTHOR
Zak Seidov, Jan 05 2015
EXTENSIONS
a(5)-a(7) from Daniel Suteu, Dec 22 2024
STATUS
approved