login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253397
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically
8
16, 44, 44, 96, 102, 96, 180, 143, 143, 180, 304, 197, 174, 197, 304, 476, 250, 246, 246, 250, 476, 704, 320, 316, 346, 316, 320, 704, 996, 391, 419, 465, 465, 419, 391, 996, 1360, 477, 520, 632, 666, 632, 520, 477, 1360, 1804, 564, 651, 823, 932, 932, 823, 651
OFFSET
1,1
COMMENTS
Table starts
...16..44..96..180..304..476..704...996..1360..1804..2336..2964..3696..4540
...44.102.143..197..250..320..391...477...564...666...769...887..1006..1140
...96.143.174..246..316..419..520...651...780...939..1096..1283..1468..1683
..180.197.246..346..465..632..823..1071..1351..1695..2079..2535..3039..3623
..304.250.316..465..666..932.1269..1693..2201..2814..3527..4360..5309..6394
..476.320.419..632..932.1318.1855..2528..3408..4498..5864..7521..9542.11949
..704.391.520..823.1269.1855.2726..3810..5311..7163..9569.12493.16140.20493
..996.477.651.1071.1693.2528.3810..5396..7717.10593.14543.19463.25921.33918
.1360.564.780.1351.2201.3408.5311..7717.11392.15966.22500.30675.41701.55452
.1804.666.939.1695.2814.4498.7163.10593.15966.22634.32533.44959.62402.84560
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (4/3)*n^3 + 4*n^2 + (20/3)*n + 4
k=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>8
k=3: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>8
k=4: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5) for n>11
k=5: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5) for n>13
k=6: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>16
k=7: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>18
Empirical quasipolynomials for column k:
k=2: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 for n>4
k=3: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 for n>4
k=4: polynomial of degree 3 plus a quasipolynomial of degree 0 with period 2 for n>6
k=5: polynomial of degree 3 plus a quasipolynomial of degree 0 with period 2 for n>8
k=6: polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2 for n>10
k=7: polynomial of degree 4 plus a quasipolynomial of degree 0 with period 2 for n>12
EXAMPLE
Some solutions for n=4 k=4
..1..1..1..1..1....0..0..0..0..0....0..0..0..1..1....0..1..0..1..1
..1..1..1..1..1....0..0..0..0..1....0..0..0..0..0....1..1..0..0..0
..1..1..1..1..1....0..0..0..0..1....0..0..0..0..1....1..1..1..1..1
..1..1..1..1..0....0..0..0..0..1....0..0..1..0..1....1..0..0..0..0
..0..1..1..1..1....0..0..0..0..1....1..0..1..0..1....1..1..1..1..1
CROSSREFS
Column 1 is A217873(n+1)
Sequence in context: A088800 A316636 A187721 * A258554 A253326 A204039
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved