login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253395
Number of (n+1) X (6+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
1
476, 320, 419, 632, 932, 1318, 1855, 2528, 3408, 4498, 5864, 7521, 9542, 11949, 14824, 18197, 22158, 26745, 32056, 38137, 45094, 52981, 61912, 71949, 83214, 95777, 109768, 125265, 142406, 161277, 182024, 204741, 229582, 256649, 286104, 318057
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>16.
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10.
Empirical g.f.: x*(476 - 1584*x + 1519*x^2 + 556*x^3 - 1881*x^4 + 1054*x^5 - 48*x^6 - 106*x^7 + 20*x^8 + 12*x^9 - 23*x^10 + 17*x^11 - 5*x^12 + 2*x^14 - x^15) / ((1 - x)^5*(1 + x)). - Colin Barker, Dec 12 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..1..0..1..1....1..1..1..0..0..0..1....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..1..1..0..0..0..0
..0..1..0..1..0..1..0....1..1..0..0..0..0..0....1..1..1..1..1..1..1
..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..0..0..0..0..0..0
..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
CROSSREFS
Column 6 of A253397.
Sequence in context: A210048 A263705 A048428 * A171077 A234077 A205287
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved