OFFSET
0,2
COMMENTS
Self-convolution of A253256.
FORMULA
EXAMPLE
G.f.: A(x) = 1 + 4*x + 26*x^2 + 202*x^3 + 1731*x^4 + 15780*x^5 +...
where A(x) = (1 - x^3*A(x)^3)^2 / (1 - x*A(x))^4.
The logarithm begins:
log(A(x)) = 4*x + 36*x^2/2 + 358*x^3/3 + 3748*x^4/4 + 40404*x^5/5 + 443886*x^6/6 + 4941654*x^7/7 +...+ A168595(n)*x^n/n +...
PROG
(PARI) {a(n) = local(A=1); A = (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
{a(n) = local(A=1); A = exp( sum(k=1, n+1, A168595(k)*x^k/k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2015
STATUS
approved