login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253217
Number of n X n nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
3
0, 0, 1, 19, 268, 3568, 47698, 649712, 9023385, 127419681, 1823918697, 26398702645, 385582981615, 5674890516295, 84060883775765, 1252066289632643, 18738613233957420, 281620474177057788, 4248088188086420832
OFFSET
1,4
COMMENTS
Diagonal of A253223.
LINKS
Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 29.
Robert Dougherty-Bliss and Manuel Kauers, Hardinian Arrays, arXiv:2309.00487 [math.CO], 2023.
Manuel Kauers and Christoph Koutschan, Guessing with Little Data, ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, July 2022, Pages 83-90.
Manuel Kauers and Christoph Koutschan, Some D-finite and Some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023.
FORMULA
Recurrence: 32*(1 + n)*(1 + 2*n)^2*(161046 + 465785*n + 551943*n^2 + 343020*n^3 + 117954*n^4 + 21285*n^5 + 1575*n^6)*a(n) - 8*(4443102 + 33718283*n + 105734340*n^2 + 180574335*n^3 + 186866686*n^4 + 122556360*n^5 + 51280818*n^6 + 13267683*n^7 + 1933470*n^8 + 121275*n^9)*a(n+1) + 2*(12137328 + 91378536*n + 283626704*n^2 + 478464380*n^3 + 488415476*n^4 + 315713355*n^5 + 130145646*n^6 + 33170868*n^7 + 4763070*n^8 + 294525*n^9)*a(n+2) + (10688508 + 80866406*n + 252913504*n^2 + 431097970*n^3 + 445804136*n^4 + 292620525*n^5 + 122735586*n^6 + 31877118*n^7 + 4668570*n^8 + 294525*n^9)*a(n+3) - (4877748 + 36871922*n + 114948300*n^2 + 194784258*n^3 + 199650088*n^4 + 129484209*n^5 + 53503836*n^6 + 13655808*n^7 + 1961820*n^8 + 121275*n^9)*a(n+4) + 2*(3 + n)^2*(7 + 2*n)*(2428 + 16118*n + 41382*n^2 + 52554*n^3 + 35154*n^4 + 11835*n^5 + 1575*n^6)*a(n+5) = 0. - conjectured by Manuel Kauers and Christoph Koutschan, Mar 02 2023; proved by Robert Dougherty-Bliss and Manuel Kauers
Conjecture: a(n) ~ 2^(4*n - 2) / (81 * Pi * n), based on the above recurrence - Vaclav Kotesovec, Mar 02 2023
EXAMPLE
Some solutions for n=4:
0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1
0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CROSSREFS
Sequence in context: A036736 A016254 A016302 * A245237 A141942 A181043
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2014
STATUS
approved