login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
3

%I #31 Apr 04 2024 10:56:21

%S 0,0,1,19,268,3568,47698,649712,9023385,127419681,1823918697,

%T 26398702645,385582981615,5674890516295,84060883775765,

%U 1252066289632643,18738613233957420,281620474177057788,4248088188086420832

%N Number of n X n nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.

%C Diagonal of A253223.

%H R. H. Hardin, <a href="/A253217/b253217.txt">Table of n, a(n) for n = 1..37</a>

%H Robert Dougherty-Bliss, <a href="https://sites.math.rutgers.edu/~zeilberg/Theses/RobertDoughertyBlissThesis.pdf">Experimental Methods in Number Theory and Combinatorics</a>, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 29.

%H Robert Dougherty-Bliss and Manuel Kauers, <a href="https://arxiv.org/abs/2309.00487">Hardinian Arrays</a>, arXiv:2309.00487 [math.CO], 2023.

%H Manuel Kauers and Christoph Koutschan, <a href="https://doi.org/10.1145/3476446.3535486">Guessing with Little Data</a>, ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, July 2022, Pages 83-90.

%H Manuel Kauers and Christoph Koutschan, <a href="https://arxiv.org/abs/2303.02793">Some D-finite and Some Possibly D-finite Sequences in the OEIS</a>, arXiv:2303.02793 [cs.SC], 2023.

%F Recurrence: 32*(1 + n)*(1 + 2*n)^2*(161046 + 465785*n + 551943*n^2 + 343020*n^3 + 117954*n^4 + 21285*n^5 + 1575*n^6)*a(n) - 8*(4443102 + 33718283*n + 105734340*n^2 + 180574335*n^3 + 186866686*n^4 + 122556360*n^5 + 51280818*n^6 + 13267683*n^7 + 1933470*n^8 + 121275*n^9)*a(n+1) + 2*(12137328 + 91378536*n + 283626704*n^2 + 478464380*n^3 + 488415476*n^4 + 315713355*n^5 + 130145646*n^6 + 33170868*n^7 + 4763070*n^8 + 294525*n^9)*a(n+2) + (10688508 + 80866406*n + 252913504*n^2 + 431097970*n^3 + 445804136*n^4 + 292620525*n^5 + 122735586*n^6 + 31877118*n^7 + 4668570*n^8 + 294525*n^9)*a(n+3) - (4877748 + 36871922*n + 114948300*n^2 + 194784258*n^3 + 199650088*n^4 + 129484209*n^5 + 53503836*n^6 + 13655808*n^7 + 1961820*n^8 + 121275*n^9)*a(n+4) + 2*(3 + n)^2*(7 + 2*n)*(2428 + 16118*n + 41382*n^2 + 52554*n^3 + 35154*n^4 + 11835*n^5 + 1575*n^6)*a(n+5) = 0. - conjectured by _Manuel Kauers_ and _Christoph Koutschan_, Mar 02 2023; proved by _Robert Dougherty-Bliss_ and _Manuel Kauers_

%F Conjecture: a(n) ~ 2^(4*n - 2) / (81 * Pi * n), based on the above recurrence - _Vaclav Kotesovec_, Mar 02 2023

%e Some solutions for n=4:

%e 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1

%e 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1

%e 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1

%e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

%K nonn

%O 1,4

%A _R. H. Hardin_, Dec 29 2014