login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253084
Triangle read by rows: T(n,k) = {binomial(n+k,n-k)*binomial(n,k)} mod 2, 0 <= k <= n.
2
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1
OFFSET
0
COMMENTS
Row sums give A106737.
FORMULA
T(n,k) = 1 if and only if ((n-k) AND NOT (n+k)) OR (k AND NOT n) is zero where AND, OR and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016
EXAMPLE
Triangle begins:
[1]
[1, 1]
[1, 0, 1]
[1, 0, 1, 1]
[1, 0, 0, 0, 1]
[1, 1, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0, 1]
[1, 0, 0, 0, 1, 0, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 0, 1]
[1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
[1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1]
[1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
...
MATHEMATICA
Table[Mod[Binomial[n + k, n - k] Binomial[n, k], 2], {n, 0, 13}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 10 2016 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1((binomial(n+k, n-k)*binomial(n, k)) % 2, ", "); ); print(); ); } \\ Michel Marcus, Feb 06 2015
(Python)
def A253084_T(n, k):
return int(not (~(n+k) & (n-k)) | (~n & k)) # Chai Wah Wu, Feb 09 2016
(Magma) /* As triangle */ [[Binomial(n+k, n-k)*Binomial(n, k) mod 2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 10 2016
CROSSREFS
Sequence in context: A343910 A329682 A113998 * A182741 A070909 A115954
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 05 2015
STATUS
approved