login
A253086
Number of ON cells at generation n of 5-celled totalistic CA defined by Rule 780.
5
1, 4, 5, 12, 4, 16, 20, 48, 17, 24, 36, 80, 12, 48, 60, 144, 40, 56, 108, 200, 56, 72, 140, 200, 156, 176, 232, 368, 140, 232, 336, 440, 316, 304, 388, 544, 316, 344, 364, 464, 460, 424, 508, 584, 448, 488, 780, 808, 688, 624, 792, 1120, 736, 784, 860, 1240, 876, 1088, 1100
OFFSET
0,2
COMMENTS
A minor observation: if written as an irregular triangle T(n,k), n>=1, k>=1, in which the row lengths are the powers of 2 greater than 2 we have that T(2,k) = 4*T(1,k) and T(3,k) = 12*T(1,k), but in both cases only for 1<=k<=4. - Omar E. Pol, Feb 14 2015
Equivalent to the following "Rules": 260,268,292,300,388,396,420,428,772,780,804,812,900,908,932,940. - Robert Price, Mar 30 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
It would be nice to have a recurrence.
MATHEMATICA
Map[Function[Apply[Plus, Flatten[#1]]],
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 128]]
ArrayPlot /@
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 31]
CROSSREFS
Cf. A246310 (8-neighbor analog), A253087.
Sequence in context: A361529 A305041 A316731 * A260624 A067371 A068719
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 11 2015
STATUS
approved