OFFSET
0,2
COMMENTS
A minor observation: if written as an irregular triangle T(n,k), n>=1, k>=1, in which the row lengths are the powers of 2 greater than 2 we have that T(2,k) = 4*T(1,k) and T(3,k) = 12*T(1,k), but in both cases only for 1<=k<=4. - Omar E. Pol, Feb 14 2015
Equivalent to the following "Rules": 260,268,292,300,388,396,420,428,772,780,804,812,900,908,932,940. - Robert Price, Mar 30 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..511
N. J. A. Sloane, Illustration of generations 0-15
N. J. A. Sloane, Illustration of generations 0-31
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
It would be nice to have a recurrence.
MATHEMATICA
Map[Function[Apply[Plus, Flatten[#1]]],
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 128]]
ArrayPlot /@
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 31]
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 11 2015
STATUS
approved