

A253086


Number of ON cells at generation n of 5celled totalistic CA defined by Rule 780.


5



1, 4, 5, 12, 4, 16, 20, 48, 17, 24, 36, 80, 12, 48, 60, 144, 40, 56, 108, 200, 56, 72, 140, 200, 156, 176, 232, 368, 140, 232, 336, 440, 316, 304, 388, 544, 316, 344, 364, 464, 460, 424, 508, 584, 448, 488, 780, 808, 688, 624, 792, 1120, 736, 784, 860, 1240, 876, 1088, 1100
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

A minor observation: if written as an irregular triangle T(n,k), n>=1, k>=1, in which the row lengths are the powers of 2 greater than 2 we have that T(2,k) = 4*T(1,k) and T(3,k) = 12*T(1,k), but in both cases only for 1<=k<=4.  Omar E. Pol, Feb 14 2015
Equivalent to the following "Rules": 260,268,292,300,388,396,420,428,772,780,804,812,900,908,932,940.  Robert Price, Mar 30 2016


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..511
N. J. A. Sloane, Illustration of generations 015
N. J. A. Sloane, Illustration of generations 031
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
Index entries for sequences related to cellular automata
Index to 2D 5Neighbor Cellular Automata
Index to Elementary Cellular Automata


FORMULA

It would be nice to have a recurrence.


MATHEMATICA

Map[Function[Apply[Plus, Flatten[#1]]],
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 128]]
ArrayPlot /@
CellularAutomaton[{780, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 31]


CROSSREFS

Cf. A246310 (8neighbor analog), A253087.
Sequence in context: A251240 A305041 A316731 * A260624 A067371 A068719
Adjacent sequences: A253083 A253084 A253085 * A253087 A253088 A253089


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Feb 11 2015


STATUS

approved



