login
A252811
T(n,k)=Number of (n+2)X(k+2) 0..4 arrays with every consecutive three elements in every row and column not having exactly two distinct values, and in every diagonal and antidiagonal having exactly two distinct values, and new values 0 upwards introduced in row major order
9
61, 155, 155, 357, 259, 357, 752, 488, 488, 752, 1808, 369, 1337, 369, 1808, 4045, 702, 551, 551, 702, 4045, 8513, 2301, 2068, 742, 2068, 2301, 8513, 19432, 1864, 6961, 1625, 1625, 6961, 1864, 19432, 42308, 3971, 2891, 2795, 3186, 2795, 2891, 3971, 42308
OFFSET
1,1
COMMENTS
Table starts
....61...155...357...752..1808...4045..8513..19432..42308..88615.195983..419484
...155...259...488...369...702...2301..1864...3971..13398..11033..23486...78603
...357...488..1337...551..2068...6961..2891..10687..35835..15328..56023..186554
...752...369...551...742..1625...2795..3763...8275..14320..19355..42636...73806
..1808...702..2068..1625..3186...9869..7897..15217..46089..37348..72215..218508
..4045..2301..6961..2795..9869..30949.13010..45797.138103..59021.201153..603059
..8513..1864..2891..3763..7897..13010.17895..36732..58811..78891.160955..259629
.19432..3971.10687..8275.15217..45797.36732..69935.206185.164273.299025..854263
.42308.13398.35835.14320.46089.138103.58811.206185.626266.265685.899078.2570383
.88615.11033.15328.19355.37348..59021.78891.164273.265685.365400.722799.1111091
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 12] for n>14
k=2: [order 10] for n>16
k=3: [order 16] for n>19
k=4: a(n) = 6*a(n-3) -4*a(n-6) -2*a(n-9) +a(n-12) for n>15
k=5: [order 30] for n>34
k=6: [order 40] for n>46
k=7: [order 34] for n>39
EXAMPLE
Some solutions for n=2 k=4
..0..1..2..0..3..4....0..1..2..0..1..2....0..1..2..0..3..2....0..1..2..0..3..2
..0..2..1..0..4..1....1..1..1..1..1..1....2..2..2..2..2..2....3..0..2..3..0..2
..0..0..0..0..0..0....2..1..0..2..1..0....3..0..2..1..4..2....2..2..2..2..2..2
..0..1..4..0..1..3....3..1..2..0..1..3....0..3..2..4..1..2....4..3..2..0..1..2
CROSSREFS
Sequence in context: A305172 A316760 A211333 * A252804 A257746 A062661
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 22 2014
STATUS
approved