login
A252810
Number of (n+2)X(7+2) 0..4 arrays with every consecutive three elements in every row and column not having exactly two distinct values, and in every diagonal and antidiagonal having exactly two distinct values, and new values 0 upwards introduced in row major order
1
8513, 1864, 2891, 3763, 7897, 13010, 17895, 36732, 58811, 78891, 160955, 259629, 349201, 716293, 1159417, 1562622, 3205525, 5186556, 6988188, 14331386, 23186122, 31239512, 64069106, 103663258, 139674119, 286463760, 463502151, 624517519
OFFSET
1,1
COMMENTS
Column 7 of A252811
LINKS
FORMULA
Empirical: a(n) = a(n-1) +6*a(n-3) -6*a(n-4) -5*a(n-6) +5*a(n-7) -7*a(n-9) +7*a(n-10) -6*a(n-12) +6*a(n-13) -3*a(n-15) +3*a(n-16) +21*a(n-18) -21*a(n-19) +18*a(n-21) -18*a(n-22) +9*a(n-24) -9*a(n-25) +3*a(n-27) -3*a(n-28) -2*a(n-30) +2*a(n-31) -a(n-33) +a(n-34) for n>39
EXAMPLE
Some solutions for n=2
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..0
..1..0..2..1..0..3..4..0..1....1..2..0..3..4..0..3..4..0
..2..0..1..2..0..4..3..0..4....2..1..0..4..3..0..4..3..0
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..0
CROSSREFS
Sequence in context: A348605 A260988 A188214 * A202986 A297896 A217338
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 22 2014
STATUS
approved