login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252809
Number of (n+2) X (6+2) 0..4 arrays with every consecutive three elements in every row and column not having exactly two distinct values, and in every diagonal and antidiagonal having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
4045, 2301, 6961, 2795, 9869, 30949, 13010, 45797, 138103, 59021, 201153, 603059, 265491, 900991, 2696670, 1205865, 4066070, 12121386, 5482742, 18338088, 54449714, 24937056, 82737170, 244696567, 113512416, 373529183, 1100179669
OFFSET
1,1
COMMENTS
Column 6 of A252811.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +10*a(n-3) -10*a(n-4) -27*a(n-6) +27*a(n-7) +6*a(n-9) -6*a(n-10) +6*a(n-12) -6*a(n-13) +53*a(n-15) -53*a(n-16) +29*a(n-18) -29*a(n-19) -29*a(n-21) +29*a(n-22) -79*a(n-24) +79*a(n-25) -62*a(n-27) +62*a(n-28) -12*a(n-30) +12*a(n-31) +5*a(n-33) -5*a(n-34) +4*a(n-36) -4*a(n-37) +a(n-39) -a(n-40) for n > 46.
EXAMPLE
Some solutions for n=2
..0..1..2..3..4..2..1..4....0..1..2..0..3..2..4..3....0..1..2..3..1..2..4..1
..4..0..2..4..3..2..4..3....2..2..2..2..2..2..2..2....1..1..1..1..1..1..1..1
..2..2..2..2..2..2..2..2....3..0..2..1..4..2..3..4....2..1..0..2..1..3..2..1
..0..4..2..0..4..2..3..1....0..3..2..4..1..2..0..3....0..1..2..0..1..2..3..1
CROSSREFS
Cf. A252811.
Sequence in context: A332458 A204948 A237030 * A202313 A001382 A090058
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 22 2014
STATUS
approved