login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252769
Numbers n such that the sum of the pentagonal numbers P(n), P(n+1), P(n+2) and P(n+3) is equal to the heptagonal number H(m) for some m.
2
94, 5908, 366282, 22703656, 1407260470, 87227445564, 5406694364578, 335127823158352, 20772518341453326, 1287561009346947940, 79808010061169319034, 4946809062783150832248, 306622353882494182280422, 19005639131651856150553996, 1178043003808532587152067410
OFFSET
1,1
COMMENTS
Also positive integers x in the solutions to 12*x^2-5*y^2+32*x+3*y+36 = 0, the corresponding values of y being A252770.
FORMULA
a(n) = 63*a(n-1)-63*a(n-2)+a(n-3).
G.f.: 2*x*(7*x-47) / ((x-1)*(x^2-62*x+1)).
a(n) = 2*(-2/3+1/240*(31+8*sqrt(15))^(-n)*(80-27*sqrt(15)+(31+8*sqrt(15))^(2*n)*(80+27*sqrt(15)))). - Colin Barker, Mar 03 2016
EXAMPLE
94 is in the sequence because P(94)+P(95)+P(96)+P(97) = 13207+13490+13776+14065 = 54538 = H(148).
MATHEMATICA
LinearRecurrence[{63, -63, 1}, {94, 5908, 366282}, 30] (* Harvey P. Dale, Mar 04 2015 *)
PROG
(PARI) Vec(2*x*(7*x-47)/((x-1)*(x^2-62*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 21 2014
STATUS
approved