login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the sum of the pentagonal numbers P(n), P(n+1), P(n+2) and P(n+3) is equal to the heptagonal number H(m) for some m.
2

%I #12 Mar 03 2016 11:10:54

%S 94,5908,366282,22703656,1407260470,87227445564,5406694364578,

%T 335127823158352,20772518341453326,1287561009346947940,

%U 79808010061169319034,4946809062783150832248,306622353882494182280422,19005639131651856150553996,1178043003808532587152067410

%N Numbers n such that the sum of the pentagonal numbers P(n), P(n+1), P(n+2) and P(n+3) is equal to the heptagonal number H(m) for some m.

%C Also positive integers x in the solutions to 12*x^2-5*y^2+32*x+3*y+36 = 0, the corresponding values of y being A252770.

%H Colin Barker, <a href="/A252769/b252769.txt">Table of n, a(n) for n = 1..557</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1).

%F a(n) = 63*a(n-1)-63*a(n-2)+a(n-3).

%F G.f.: 2*x*(7*x-47) / ((x-1)*(x^2-62*x+1)).

%F a(n) = 2*(-2/3+1/240*(31+8*sqrt(15))^(-n)*(80-27*sqrt(15)+(31+8*sqrt(15))^(2*n)*(80+27*sqrt(15)))). - _Colin Barker_, Mar 03 2016

%e 94 is in the sequence because P(94)+P(95)+P(96)+P(97) = 13207+13490+13776+14065 = 54538 = H(148).

%t LinearRecurrence[{63,-63,1},{94,5908,366282},30] (* _Harvey P. Dale_, Mar 04 2015 *)

%o (PARI) Vec(2*x*(7*x-47)/((x-1)*(x^2-62*x+1)) + O(x^100))

%Y Cf. A000326, A000566, A252770.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Dec 21 2014