login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252069
Number of (n+2) X (2+2) 0..2 arrays with every 3 X 3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.
2
105, 152, 419, 1135, 3029, 8352, 23091, 63460, 174704, 481577, 1326679, 3654425, 10068184, 27738117, 76416462, 210524456, 579990085, 1597852627, 4402027937, 12127445290, 33410714339, 92045405682, 253582052742, 698610194521
OFFSET
1,1
COMMENTS
Column 2 of A252075.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) + 4*a(n-3) - a(n-4) - 4*a(n-5) - 3*a(n-6) + a(n-8) + a(n-9) for n>11.
Empirical g.f.: x*(105 - 58*x + 10*x^2 - 275*x^3 - 163*x^4 + 55*x^5 + 160*x^6 + 77*x^7 + 6*x^8 - 39*x^9 - 4*x^10) / ((1 - x)*(1 - x - 2*x^2 - 6*x^3 - 5*x^4 - x^5 + 2*x^6 + 2*x^7 + x^8)). - Colin Barker, Mar 20 2018
EXAMPLE
Some solutions for n=4:
..2..2..2..2....2..1..2..2....2..2..2..2....2..2..2..1....2..2..2..2
..2..2..1..2....2..2..2..1....2..2..2..2....1..2..2..2....2..1..2..2
..1..2..2..2....2..2..2..2....2..2..2..2....2..2..1..2....2..2..2..2
..2..2..2..2....2..2..2..2....2..1..2..2....2..2..2..2....2..2..2..2
..2..2..2..2....2..2..2..2....2..2..2..2....2..2..2..1....2..2..2..2
..2..1..2..2....1..2..2..1....1..2..2..2....2..2..1..2....2..2..1..2
CROSSREFS
Cf. A252075.
Sequence in context: A069702 A239589 A203614 * A133509 A013590 A216918
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 13 2014
STATUS
approved