|
|
A133509
|
|
Numbers k such that m=1 is the only number for which the sum of digits of m^k equals m.
|
|
7
|
|
|
0, 105, 164, 186, 194, 206, 216, 231, 254, 282, 285, 302, 314, 324, 374, 386, 402, 416, 456, 468, 491, 504, 521, 552, 588, 606, 610, 615, 629, 651, 656, 657, 696, 759, 794, 830, 842, 854, 870, 903, 906, 954, 956, 981, 998, 1029, 1064, 1079, 1082, 1109, 1112, 1131
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Michael S. Branicky, Table of n, a(n) for n = 1..100
|
|
FORMULA
|
If t is a term, A046000(t)=1, A046017(t)=0, A046019(t)=1, A046471(t)=0 and A061211(t)=1. - Mohammed Yaseen, Jun 29 2022
|
|
PROG
|
(Python)
def ok(n):
d, lim = 1, 1
while lim < n*9*d: d, lim = d+1, lim*10
return not any(sum(map(int, str(k**n))) == k for k in range(2, lim+1))
for k in range(195):
if ok(k): print(k, end=", ") # Michael S. Branicky, Jul 06 2022
|
|
CROSSREFS
|
Cf. A046000, A046017, A046019, A046471, A061211, A152147.
Sequence in context: A239589 A203614 A252069 * A013590 A216918 A278569
Adjacent sequences: A133506 A133507 A133508 * A133510 A133511 A133512
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Farideh Firoozbakht, Dec 04 2007
|
|
EXTENSIONS
|
Description improved by T. D. Noe, Nov 26 2008
Extension by T. D. Noe, Nov 26 2008
Edited by Charles R Greathouse IV, Aug 02 2010
a(1) = 0 and a(46) and beyond from Michael S. Branicky, Jul 06 2022
|
|
STATUS
|
approved
|
|
|
|