login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252041
Numbers m such that m - 3 divides m^m + 3.
4
1, 2, 4, 5, 6, 9, 10, 85, 105, 136, 186, 262, 820, 1161, 2626, 2926, 4924, 10396, 11656, 19689, 27637, 33736, 36046, 42886, 42901, 53866, 55189, 82741, 95266, 103762, 106822, 127401, 135460, 251506, 366796, 375220, 413326, 466966, 531445, 553456, 568876
OFFSET
1,2
COMMENTS
Numbers m such that (m^m + 3)/(m - 3) is an integer.
Most but not all terms are congruent to 4 modulo 6. - Robert G. Wilson v, Dec 19 2014
Note that m^m == 3^m (mod m-3). - Robert Israel, Dec 19 2014
LINKS
EXAMPLE
2 is in this sequence because (2^2 + 3)/(2 - 3) = -7 is an integer.
4 is in this sequence because (4^4 + 3)/(4 - 3) = 259 is an integer.
7 is not in the sequence because (7^7 + 3)/4 = 411773/2, which is not an integer.
MAPLE
select(t -> 3 &^t + 3 mod (t-3) = 0, [1, 2, $4..10^6]); # Robert Israel, Dec 19 2014
MATHEMATICA
fQ[n_] := Mod[PowerMod[n, n, n - 3] + 3, n - 3] == 0; Select[Range@ 1000000, fQ] (* Michael De Vlieger, Dec 13 2014; modified by Robert G. Wilson v, Dec 19 2014 *)
PROG
(Magma) [n: n in [4..50000] | Denominator((n^n+3)/(n-3)) eq 1];
(PARI) isok(n) = (n != 3) && (Mod(n, n-3)^n == -3); \\ Michel Marcus, Dec 13 2014
CROSSREFS
Cf. ...............Numbers n such that x divides y, where:
...x......y....k = 0.....k = 1.....k = 2......k = 3.......
..n-k..n^n-k..A000027...A087156...A242787....A242788......
..n-k..n^n+k..A000027..see below..A249751..this sequence..
..n+k..n^n-k..A000027...A004275...A251603....A251862......
..n+k..n^n+k..A000027...A004273...A213382....A242800......
(For x=n-1 and y=n^n+1, the only terms are 0, 2 and 3. - David L. Harden, Dec 28 2014)
Sequence in context: A169694 A285163 A015834 * A231587 A050011 A030303
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Dec 13 2014
STATUS
approved