login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251991 Numbers n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to the sum of the hexagonal numbers H(m) and H(m+1) for some m. 2
60, 11704, 2270580, 440480880, 85451020204, 16577057438760, 3215863692099300, 623860979209825504, 121025814103014048540, 23478384075005515591320, 4554685484736967010667604, 883585505654896594553923920, 171411033411565202376450572940 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Also nonnegative integers y in the solutions to 4*x^2-3*y^2+2*x-2*y = 0, the corresponding values of x being A251990.
LINKS
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: -4*x*(x+15) / ((x-1)*(x^2-194*x+1)).
a(n) = (-4-(-2+sqrt(3))*(97+56*sqrt(3))^(-n)+(2+sqrt(3))*(97+56*sqrt(3))^n)/12. - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)+64. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
60 is in the sequence because P(60)+P(61) = 5370+5551 = 10921 = 5356+5565 = H(52)+H(53).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {60, 11704, 2270580}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(-4*x*(x+15)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[60, 11704]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2)+64: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
Sequence in context: A309996 A146513 A269883 * A145411 A248708 A184890
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 12 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 22:38 EST 2023. Contains 367717 sequences. (Running on oeis4.)