login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251990
Numbers n such that the sum of the hexagonal numbers H(n) and H(n+1) is equal to the sum of the pentagonal numbers P(m) and P(m+1) for some m.
2
52, 10136, 1966380, 381467632, 74002754276, 14356152861960, 2785019652466012, 540279456425544416, 104811429526903150740, 20332877048762785699192, 3944473336030453522492556, 765207494312859220577856720, 148446309423358658338581711172
OFFSET
1,1
COMMENTS
Also nonnegative integers x in the solutions to 4*x^2-3*y^2+2*x-2*y = 0, the corresponding values of y being A251991.
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: 4*x*(x-13) / ((x-1)*(x^2-194*x+1)).
a(n) = (-6+(3-2*sqrt(3))*(97+56*sqrt(3))^(-n)+(3+2*sqrt(3))*(97+56*sqrt(3))^n)/24. - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)+48. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
52 is in the sequence because H(52)+H(53) = 5356+5565 = 10921 = 5370+5551 = P(60)+P(61).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {52, 10136, 1966380}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(4*x*(x-13)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[52, 10136]; [n le 2 select I[n] else 194*Self(n-1)- Self(n-2)+48: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 12 2014
STATUS
approved