OFFSET
1,1
COMMENTS
Also nonnegative integers x in the solutions to 4*x^2-3*y^2+2*x-2*y = 0, the corresponding values of y being A251991.
LINKS
Colin Barker, Table of n, a(n) for n = 1..437
Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: 4*x*(x-13) / ((x-1)*(x^2-194*x+1)).
a(n) = (-6+(3-2*sqrt(3))*(97+56*sqrt(3))^(-n)+(3+2*sqrt(3))*(97+56*sqrt(3))^n)/24. - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)+48. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
52 is in the sequence because H(52)+H(53) = 5356+5565 = 10921 = 5370+5551 = P(60)+P(61).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {52, 10136, 1966380}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(4*x*(x-13)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[52, 10136]; [n le 2 select I[n] else 194*Self(n-1)- Self(n-2)+48: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 12 2014
STATUS
approved