login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the sum of the hexagonal numbers H(n) and H(n+1) is equal to the sum of the pentagonal numbers P(m) and P(m+1) for some m.
2

%I #13 Sep 08 2022 08:46:10

%S 52,10136,1966380,381467632,74002754276,14356152861960,

%T 2785019652466012,540279456425544416,104811429526903150740,

%U 20332877048762785699192,3944473336030453522492556,765207494312859220577856720,148446309423358658338581711172

%N Numbers n such that the sum of the hexagonal numbers H(n) and H(n+1) is equal to the sum of the pentagonal numbers P(m) and P(m+1) for some m.

%C Also nonnegative integers x in the solutions to 4*x^2-3*y^2+2*x-2*y = 0, the corresponding values of y being A251991.

%H Colin Barker, <a href="/A251990/b251990.txt">Table of n, a(n) for n = 1..437</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (195,-195,1).

%F a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).

%F G.f.: 4*x*(x-13) / ((x-1)*(x^2-194*x+1)).

%F a(n) = (-6+(3-2*sqrt(3))*(97+56*sqrt(3))^(-n)+(3+2*sqrt(3))*(97+56*sqrt(3))^n)/24. - _Colin Barker_, Mar 02 2016

%F a(n) = 194*a(n-1)-a(n-2)+48. - _Vincenzo Librandi_, Mar 03 2016

%e 52 is in the sequence because H(52)+H(53) = 5356+5565 = 10921 = 5370+5551 = P(60)+P(61).

%t LinearRecurrence[{195, -195, 1}, {52, 10136, 1966380}, 30] (* _Vincenzo Librandi_, Mar 03 2016 *)

%o (PARI) Vec(4*x*(x-13)/((x-1)*(x^2-194*x+1)) + O(x^100))

%o (Magma) I:=[52,10136]; [n le 2 select I[n] else 194*Self(n-1)- Self(n-2)+48: n in [1..20]]; // _Vincenzo Librandi_, Mar 03 2016

%Y Cf. A000326, A000384, A251991.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Dec 12 2014