

A145411


Number of Hamiltonian cycles in K_6 X P_n.


1



60, 12000, 1758360, 261136920, 38768711160, 5755703361240, 854506434905400, 126862210606868760, 18834288215839119480, 2796186594116563849560, 415129012549619965635000, 61631114827252880297037720
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129154.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..460
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129154.
F. Faase, Counting Hamiltonian cycles in product graphs.
F. Faase, Results from the counting program
Index entries for linear recurrences with constant coefficients, signature (145,516,288).


FORMULA

Recurrence:
a(1) = 60,
a(2) = 12000,
a(3) = 1758360, and
a(n) = 145a(n1) + 516a(n2)  288a(n3).
G.f.: 60*x*(1+55*x210*x^2)/(1145*x516*x^2+288*x^3). [R. J. Mathar, Feb 19 2009; corrected by Georg Fischer, May 12 2019]


MATHEMATICA

LinearRecurrence[{145, 516, 288}, {60, 12000, 1758360}, 20] (* Harvey P. Dale, Jun 16 2015 *)


CROSSREFS

Sequence in context: A146513 A269883 A251991 * A248708 A184890 A295598
Adjacent sequences: A145408 A145409 A145410 * A145412 A145413 A145414


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Feb 03 2009


EXTENSIONS

More terms from R. J. Mathar, Feb 19 2009


STATUS

approved



