login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145411 Number of Hamiltonian cycles in K_6 X P_n. 1
60, 12000, 1758360, 261136920, 38768711160, 5755703361240, 854506434905400, 126862210606868760, 18834288215839119480, 2796186594116563849560, 415129012549619965635000, 61631114827252880297037720 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..460

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

F. Faase, Counting Hamiltonian cycles in product graphs.

F. Faase, Results from the counting program

Index entries for linear recurrences with constant coefficients, signature (145,516,-288).

FORMULA

Recurrence:

a(1) = 60,

a(2) = 12000,

a(3) = 1758360, and

a(n) = 145a(n-1) + 516a(n-2) - 288a(n-3).

G.f.: 60*x*(1+55*x-210*x^2)/(1-145*x-516*x^2+288*x^3). [R. J. Mathar, Feb 19 2009; corrected by Georg Fischer, May 12 2019]

MATHEMATICA

LinearRecurrence[{145, 516, -288}, {60, 12000, 1758360}, 20] (* Harvey P. Dale, Jun 16 2015 *)

CROSSREFS

Sequence in context: A146513 A269883 A251991 * A248708 A184890 A295598

Adjacent sequences:  A145408 A145409 A145410 * A145412 A145413 A145414

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 03 2009

EXTENSIONS

More terms from R. J. Mathar, Feb 19 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 12:34 EST 2020. Contains 332018 sequences. (Running on oeis4.)