login
A251950
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime
9
1462, 2255, 2255, 1933, 1182, 1933, 2735, 1251, 1251, 2735, 4346, 2053, 2272, 2053, 4346, 7115, 3609, 3572, 3572, 3609, 7115, 12344, 7348, 8756, 8937, 8756, 7348, 12344, 20995, 14434, 21326, 25231, 25231, 21326, 14434, 20995, 36057, 29212, 47034, 68456
OFFSET
1,1
COMMENTS
Table starts
..1462...2255...1933....2735.....4346......7115......12344.......20995
..2255...1182...1251....2053.....3609......7348......14434.......29212
..1933...1251...2272....3572.....8756.....21326......47034......116348
..2735...2053...3572....8937....25231.....68456.....177132......512051
..4346...3609...8756...25231....87011....285399.....875435.....3103838
..7115...7348..21326...68456...285399...1086474....3678858....15275433
.12344..14434..47034..177132...875435...3678858...14138322....70829204
.20995..29212.116348..512051..3103838..15275433...70829204...436167357
.36057..60954.285990.1394255.10096792..58358828..294856410..2122347433
.58580.125586.648986.3602453.31749014.199425794.1132100600.10131857942
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 41] for n>50
k=2: [order 21] for n>27
k=3: [order 30] for n>33
k=4: [order 36] for n>39
k=5: [order 54] for n>57
k=6: [order 66] for n>69
k=7: [order 90] for n>95
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..1..1..0....1..1..0..1..1..0....3..3..1..1..0..1....3..1..1..0..1..1
..3..0..2..0..0..2....3..0..2..0..0..2....3..2..0..0..2..0....2..0..0..2..0..3
..1..1..0..1..1..3....1..1..0..1..1..3....1..0..1..1..3..1....0..1..1..3..1..1
..1..1..0..1..1..0....1..1..0..1..1..0....1..0..1..1..0..1....0..1..1..0..1..1
..0..3..2..0..3..2....3..0..2..0..3..2....0..2..0..3..2..0....2..0..0..2..0..0
..1..1..0..1..1..0....1..1..3..1..1..0....1..0..1..1..0..1....0..1..1..3..1..1
CROSSREFS
Sequence in context: A232347 A251942 A251943 * A023074 A164647 A284887
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 11 2014
STATUS
approved