login
A251943
Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime
1
1462, 2255, 1933, 2735, 4346, 7115, 12344, 20995, 36057, 58580, 104407, 186502, 312212, 556439, 993385, 1675842, 2994368, 5369398, 9093366, 16230412, 29150222, 49556229, 88369502, 158881402, 271050205, 482778934, 868646414, 1486881592
OFFSET
1,1
COMMENTS
Column 1 of A251950
LINKS
FORMULA
Empirical: a(n) = 13*a(n-3) +3*a(n-4) +a(n-5) -58*a(n-6) -35*a(n-7) -16*a(n-8) +108*a(n-9) +138*a(n-10) +89*a(n-11) -86*a(n-12) -224*a(n-13) -219*a(n-14) -53*a(n-15) +185*a(n-16) +284*a(n-17) +237*a(n-18) -44*a(n-19) -240*a(n-20) -357*a(n-21) -128*a(n-22) +165*a(n-23) +353*a(n-24) +258*a(n-25) -73*a(n-26) -285*a(n-27) -266*a(n-28) -18*a(n-29) +190*a(n-30) +193*a(n-31) +45*a(n-32) -82*a(n-33) -106*a(n-34) -31*a(n-35) +25*a(n-36) +32*a(n-37) +15*a(n-38) -4*a(n-39) -6*a(n-40) -2*a(n-41) for n>50
EXAMPLE
Some solutions for n=4
..0..1..1....1..1..1....3..1..1....1..2..0....0..1..2....1..1..1....0..2..1
..2..3..0....1..0..1....2..3..2....3..0..2....0..3..0....1..0..1....3..3..1
..0..1..1....3..2..0....0..1..2....1..3..3....3..1..3....0..2..0....0..0..3
..3..1..1....1..0..1....1..1..3....1..0..2....0..3..0....1..0..1....0..0..3
..2..3..0....1..0..1....1..1..0....1..2..0....2..3..2....1..0..1....3..3..1
..2..3..2....0..3..0....0..3..2....0..1..1....1..1..3....0..3..0....0..0..3
CROSSREFS
Sequence in context: A283493 A232347 A251942 * A251950 A023074 A164647
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 11 2014
STATUS
approved