login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime
9

%I #4 Dec 11 2014 12:48:34

%S 1462,2255,2255,1933,1182,1933,2735,1251,1251,2735,4346,2053,2272,

%T 2053,4346,7115,3609,3572,3572,3609,7115,12344,7348,8756,8937,8756,

%U 7348,12344,20995,14434,21326,25231,25231,21326,14434,20995,36057,29212,47034,68456

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime

%C Table starts

%C ..1462...2255...1933....2735.....4346......7115......12344.......20995

%C ..2255...1182...1251....2053.....3609......7348......14434.......29212

%C ..1933...1251...2272....3572.....8756.....21326......47034......116348

%C ..2735...2053...3572....8937....25231.....68456.....177132......512051

%C ..4346...3609...8756...25231....87011....285399.....875435.....3103838

%C ..7115...7348..21326...68456...285399...1086474....3678858....15275433

%C .12344..14434..47034..177132...875435...3678858...14138322....70829204

%C .20995..29212.116348..512051..3103838..15275433...70829204...436167357

%C .36057..60954.285990.1394255.10096792..58358828..294856410..2122347433

%C .58580.125586.648986.3602453.31749014.199425794.1132100600.10131857942

%H R. H. Hardin, <a href="/A251950/b251950.txt">Table of n, a(n) for n = 1..509</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 41] for n>50

%F k=2: [order 21] for n>27

%F k=3: [order 30] for n>33

%F k=4: [order 36] for n>39

%F k=5: [order 54] for n>57

%F k=6: [order 66] for n>69

%F k=7: [order 90] for n>95

%e Some solutions for n=4 k=4

%e ..1..1..0..1..1..0....1..1..0..1..1..0....3..3..1..1..0..1....3..1..1..0..1..1

%e ..3..0..2..0..0..2....3..0..2..0..0..2....3..2..0..0..2..0....2..0..0..2..0..3

%e ..1..1..0..1..1..3....1..1..0..1..1..3....1..0..1..1..3..1....0..1..1..3..1..1

%e ..1..1..0..1..1..0....1..1..0..1..1..0....1..0..1..1..0..1....0..1..1..0..1..1

%e ..0..3..2..0..3..2....3..0..2..0..3..2....0..2..0..3..2..0....2..0..0..2..0..0

%e ..1..1..0..1..1..0....1..1..3..1..1..0....1..0..1..1..0..1....0..1..1..3..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 11 2014