login
A251718
a(n) = smallest positive integer k such that both A083221(k, n) and A083221(k+1, n) have at most two prime factors (are primes or semiprimes).
4
1, 1, 1, 2, 3, 2, 1, 3, 4, 2, 3, 4, 3, 5, 2, 2, 4, 3, 1, 3, 2, 4, 3, 2, 5, 4, 2, 3, 4, 2, 1, 5, 6, 2, 3, 2, 1, 3, 6, 4, 4, 4, 6, 3, 4, 5, 3, 6, 4, 6, 2, 4, 3, 4, 2, 5, 8, 5, 6, 3, 3, 4, 4, 2, 3, 2, 3, 7, 6, 5, 3, 4, 4, 6, 2, 2, 5, 7, 1, 5, 5, 4, 6, 2, 4, 6, 5, 5, 4, 2, 2, 5, 3, 3, 3, 4, 1, 3, 5, 7, 5, 4, 3, 3, 5, 2, 4, 5, 7, 4, 7, 4, 3, 7, 4, 3, 2, 3, 4, 2
OFFSET
1,4
LINKS
FORMULA
For all n, A251717(n) <= a(n) <= A251719(n).
PROG
(Scheme) (define (A251718 n) (let loop ((i 1)) (if (and (<= (A001222 (A083221bi i n)) 2) (<= (A001222 (A083221bi (+ i 1) n)) 2)) i (loop (+ i 1))))) ;; Code for A083221bi given in A083221.
CROSSREFS
Variant: A251717.
A005382 gives the positions of 1 after the initial a(1)=1.
Sequence in context: A117648 A037222 A107357 * A182457 A368605 A334715
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 15 2014
STATUS
approved