login
A117648
Let f(0) = 2, f(1) = 3, and f(n) = (4/3)*f(n-1) - f(n-2) for n >= 2, a(n) = abs(floor(f(n))).
1
2, 3, 2, 1, 3, 3, 2, 0, 2, 2, 0, 2, 3, 3, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 0, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 0, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 0, 3, 3, 2, 0, 2, 2, 1, 2, 3, 3, 1, 1, 2, 2, 0, 3, 3
OFFSET
0,1
LINKS
FORMULA
a(n) = abs(floor(f(n))), where f(n) = (4/3)*f(n-1) - f(n-2), f(0) = 2, and f(1) = 3.
MATHEMATICA
f[n_]:= f[n]= If[n<2, n+2, (4/3)*f[n-1] -f[n-2]]; a[n_]= Abs[Floor[f[n]]];
Table[a[n], {n, 0, 100}]
PROG
(Magma)
C<i> := ComplexField();
f:= func< n | Round((1/2)*( (2-i*Sqrt(5))*((2+i*Sqrt(5))/3)^n + (2+i*Sqrt(5))*((2-i*Sqrt(5))/3)^n )) >;
[Abs(Floor(f(n))): n in [0..100]]; // G. C. Greubel, Jul 11 2021
(Sage)
@CachedFunction
def f(n): return n+2 if (n<2) else (4/3)*f(n-1) - f(n-2)
def a(n): return abs(floor(f(n)))
[a(n) for n in (0..100)] # G. C. Greubel, Jul 11 2021
CROSSREFS
Sequence in context: A375301 A125211 A139367 * A037222 A107357 A251718
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Apr 10 2006
EXTENSIONS
Edited by G. C. Greubel, Jul 11 2021
STATUS
approved