The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117648 Let f(0) = 2, f(1) = 3, and f(n) = (4/3)*f(n-1) - f(n-2) for n >= 2, a(n) = abs(floor(f(n))). 1
 2, 3, 2, 1, 3, 3, 2, 0, 2, 2, 0, 2, 3, 3, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 0, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 0, 2, 3, 3, 0, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 0, 3, 3, 2, 0, 2, 2, 1, 2, 3, 3, 1, 1, 2, 2, 0, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = abs(floor(f(n))), where f(n) = (4/3)*f(n-1) - f(n-2), f(0) = 2, and f(1) = 3. MATHEMATICA f[n_]:= f[n]= If[n<2, n+2, (4/3)*f[n-1] -f[n-2]]; a[n_]= Abs[Floor[f[n]]]; Table[a[n], {n, 0, 100}] PROG (MAGMA) C := ComplexField(); f:= func< n | Round((1/2)*( (2-i*Sqrt(5))*((2+i*Sqrt(5))/3)^n + (2+i*Sqrt(5))*((2-i*Sqrt(5))/3)^n )) >; [Abs(Floor(f(n))): n in [0..100]]; // G. C. Greubel, Jul 11 2021 (Sage) @CachedFunction def f(n): return n+2 if (n<2) else (4/3)*f(n-1) - f(n-2) def a(n): return abs(floor(f(n))) [a(n) for n in (0..100)] # G. C. Greubel, Jul 11 2021 CROSSREFS Sequence in context: A118105 A125211 A139367 * A037222 A107357 A251718 Adjacent sequences:  A117645 A117646 A117647 * A117649 A117650 A117651 KEYWORD nonn,easy,less AUTHOR Roger L. Bagula, Apr 10 2006 EXTENSIONS Edited by G. C. Greubel, Jul 11 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 15:56 EDT 2022. Contains 353706 sequences. (Running on oeis4.)