OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = abs(floor(f(n))), where f(n) = (248/125)*f(n-1) - f(n-2), with f(0) = 120, and f(1) = 125.
a(n) = abs(floor( (5^(1-3*n)/498)*( (5976 - i*149*sqrt(249))*(124 + i*sqrt(249))^n + (5976 + i*149*sqrt(249))*(124 - i*sqrt(249))^n ) )).
MATHEMATICA
f[n_]:= f[n]= If[n<2, 5*(n+24), (248/125)*f[n-1] -f[n-2]];
Table[Abs[Floor[f[n]]], {n, 0, 55}]
(* Second program *)
M = {{0, 1}, {-1, (248/125)}}; v[0]= {120, 125}; v[n_]:= v[n]= M.v[n-1];
Table[Abs[Floor[v[n][[1]]]], {n, 0, 55}]
PROG
(Magma)
C<i> := ComplexField();
A117645:= func< n | Abs(Floor(Round( (5^(1-3*n)/498)*( (5976 - i*149*Sqrt(249))*(124 + i*Sqrt(249))^n + (5976 + i*149*Sqrt(249))*(124 - i*Sqrt(249))^n )) )) >;
[A117645(n): n in [0..60]]; // G. C. Greubel, Dec 03 2022
(SageMath)
@CachedFunction
def f(n): return 5*(n+24) if (n<2) else (248/125)*f(n-1) - f(n-2)
def A117645(n): return abs(floor(f(n)))
[A117645(n) for n in range(60)] # G. C. Greubel, Dec 03 2022
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Apr 10 2006
EXTENSIONS
Edited by G. C. Greubel, Dec 03 2022
STATUS
approved