login
A251135
Number of (n+1) X (6+1) 0..2 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements.
1
4699, 9786, 15830, 27738, 46023, 79226, 135959, 240780, 434193, 804400, 1519053, 2920510, 5684595, 11169870, 22084427, 43851224, 87307005, 174131892, 347676817, 694650138, 1388459119, 2775924642, 5550678879, 11099992388, 22198396553
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 13*a(n-2) + 10*a(n-3) + 5*a(n-4) - 14*a(n-5) + 9*a(n-6) - 2*a(n-7) for n>10.
Conjectures from Colin Barker, Nov 26 2018: (Start)
G.f.: x*(4699 - 18408*x + 18201*x^2 + 12986*x^3 - 35970*x^4 + 22238*x^5 - 2915*x^6 - 1012*x^7 + 39*x^8 + 2*x^9) / ((1 - x)^5*(1 + x)*(1 - 2*x)).
a(n) = (9*(3271+441*(-1)^n+441*2^(1+n)) + 15178*n + 4111*n^2 + 578*n^3 + 35*n^4) / 12 for n>3.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0..2....0..1..1..1..1..1..1....0..0..0..2..0..0..2
..0..0..0..0..0..0..1....0..0..0..0..0..0..0....0..0..0..2..0..0..2
..0..0..0..0..0..0..1....0..0..0..0..0..0..0....1..0..0..2..0..0..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....2..0..0..2..0..0..0
..2..2..2..2..1..1..0....2..1..1..1..0..0..0....2..0..0..2..0..0..0
CROSSREFS
Column 6 of A251137.
Sequence in context: A256808 A114542 A114568 * A237699 A235022 A223246
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved