login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A251132
Number of (n+1) X (3+1) 0..2 arrays with no 2 X 2 subblock having the sum of its diagonal elements greater than the maximum of its antidiagonal elements.
1
369, 1002, 1997, 4110, 8050, 15830, 30770, 60088, 117492, 230956, 455680, 902602, 1792830, 3569098, 7116086, 14203652, 28370704, 56695536, 113333908, 226597798, 453110314, 906118110, 1812113626, 3624082160, 7247993420, 14495787220
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 13*a(n-2) + 10*a(n-3) + 5*a(n-4) - 14*a(n-5) + 9*a(n-6) - 2*a(n-7) for n>10.
Conjectures from Colin Barker, Nov 26 2018: (Start)
G.f.: x*(369 - 1212*x + 782*x^2 + 1464*x^3 - 2514*x^4 + 1146*x^5 + 62*x^6 - 114*x^7 - 5*x^8 + 2*x^9) / ((1 - x)^5*(1 + x)*(1 - 2*x)).
a(n) = (36*(-5+9*(-1)^n+9*2^(3+n)) + 202*n + 151*n^2 + 50*n^3 + 5*n^4) / 12 for n>3.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..2....0..0..1..2....0..0..1..2....0..0..2..2....0..0..0..2
..0..0..0..0....1..1..1..1....1..0..1..0....0..0..2..0....0..0..0..1
..0..0..0..0....1..0..0..0....1..0..1..0....1..0..2..0....0..0..0..1
..2..2..2..2....1..0..0..0....2..0..1..0....1..0..2..0....1..0..0..1
..1..0..0..0....1..0..0..0....2..0..1..0....2..0..2..0....1..0..0..0
CROSSREFS
Column 3 of A251137.
Sequence in context: A062041 A373764 A205730 * A183351 A275170 A205911
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved