The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114568 a(n) = 4694*a(n-2) + 9380*a(n-3) for n >= 3 with a(0) = 0 and a(1) = a(2) = 1. 0
 0, 1, 1, 4694, 14074, 22043016, 110093076, 103601931224, 723540388824, 487340138218336, 4368084700020976, 2294361417644038304, 25075040078386453024, 10810705128907312553856, 139223348225447089786176, 50980653751026190057165184, 754918810679399231211479424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (0,4694,9380). FORMULA From Colin Barker, Jan 21 2013: (Start) a(n) = 4694*a(n-2) + 9380*a(n-3) for n >= 3 with a(0) = 0 and a(1) = a(2) = 1. G.f.: -x * (x + 1) / ((2*x + 1) * (4690*x^2 + 2*x - 1)). (End) MAPLE with(LinearAlgebra); M := Matrix([[0, 1, 0], [0, 0, 1], [9380, 4694, 0]]); w := proc(n) option remember;      if n = 0 then Matrix([[0], [1], [1]]); elif n >= 1 then      MatrixMatrixMultiply(M, w(n - 1)); end if;   end proc; seq(w(n)[1, 1], n = 0..40); # Petros Hadjicostas, Nov 20 2019 MATHEMATICA M = {{0, 1, 0}, {0, 0, 1}, {9380, 4694, 0}}; w[0] = {{0}, {1}, {1}}; w[n_] := w[n] = M.w[n - 1]; a = Flatten[Table[w[n][[1]], {n, 0, 25}]]; (* Modified by Petros Hadjicostas, Nov 20 2019 *) LinearRecurrence[{0, 4694, 9380}, {0, 1, 1}, 20] (* Harvey P. Dale, Apr 11 2020 *) CROSSREFS Sequence in context: A204073 A256808 A114542 * A251135 A237699 A235022 Adjacent sequences:  A114565 A114566 A114567 * A114569 A114570 A114571 KEYWORD nonn,less,easy AUTHOR Roger L. Bagula, Feb 16 2006 EXTENSIONS More terms from Colin Barker, Jan 21 2013 Edited and new name using formula from Colin Barker, Joerg Arndt, Nov 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 13:24 EDT 2022. Contains 353873 sequences. (Running on oeis4.)