login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250550
Numerator of the harmonic mean of the first n 10-gonal numbers.
3
1, 20, 810, 28080, 596700, 5012280, 29238300, 1938081600, 7994586600, 328666338000, 14822851843800, 48511151488800, 367876232123400, 20997243402735600, 427443883555689000, 55624697380046995200, 59101240966299932400, 479763014902905333600
OFFSET
1,2
LINKS
EXAMPLE
a(3) = 810 because the first 3 10-gonal numbers are [1,10,27], and 3/(1/1+1/10+1/27) = 810/307.
MATHEMATICA
Module[{nn=20, pn}, pns=PolygonalNumber[10, Range[nn]]; Table[HarmonicMean[ Take[ pns, n]], {n, nn}]]//Numerator (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 09 2017 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(n=1, #s, s[n]=numerator(harmonicmean(vector(n, k, (8*k^2-6*k)/2)))); s
CROSSREFS
Cf. A001107 (10-gonal numbers), A250551 (denominators).
Sequence in context: A281777 A041763 A041760 * A292417 A117798 A006424
KEYWORD
nonn,frac
AUTHOR
Colin Barker, Nov 25 2014
STATUS
approved