login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250548
Numerator of the harmonic mean of the first n 9-gonal numbers.
2
1, 9, 216, 6624, 207000, 9190800, 825640200, 16041009600, 174445979400, 2519775258000, 8315258351400, 716624083375200, 33382738550561400, 1114469886995665200, 5970374394619635000, 340709365452960504000, 6878070315081640174500
OFFSET
1,2
LINKS
EXAMPLE
a(3) = 216 because the first 3 9-gonal numbers are [1,9,24], and 3/(1/1+1/9+1/24) = 216/83.
MATHEMATICA
Module[{nn=20, pns}, pns=PolygonalNumber[9, Range[nn]]; Numerator[Table[ HarmonicMean[Take[pns, n]], {n, nn}]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 30 2016 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(n=1, #s, s[n]=numerator(harmonicmean(vector(n, k, (7*k^2-5*k)/2)))); s
CROSSREFS
Cf. A001106 (9-gonal numbers), A250549 (denominators).
Sequence in context: A188409 A109587 A067426 * A007108 A007107 A217042
KEYWORD
nonn,frac
AUTHOR
Colin Barker, Nov 25 2014
STATUS
approved