login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250549
Denominator of the harmonic mean of the first n 9-gonal numbers.
2
1, 5, 83, 1945, 49177, 1833349, 141933773, 2422703191, 23493728113, 306193780933, 920490263449, 72844719575371, 3136916685865153, 97366698355411543, 487364191723246127, 26098860817171249607, 496295891513328449033, 1821113866092559163621
OFFSET
1,2
LINKS
EXAMPLE
a(3) = 83 because the first 3 9-gonal numbers are [1,9,24], and 3/(1/1+1/9+1/24) = 216/83.
MATHEMATICA
Module[{nn=20, p9}, p9=PolygonalNumber[9, Range[nn]]; Table[Denominator[ HarmonicMean[ Take[p9, n]]], {n, nn}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 26 2019 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(n=1, #s, s[n]=denominator(harmonicmean(vector(n, k, (7*k^2-5*k)/2)))); s
CROSSREFS
Cf. A001106 (9-gonal numbers), A250548 (numerators).
Sequence in context: A173876 A368080 A348791 * A035512 A054953 A215172
KEYWORD
nonn,frac
AUTHOR
Colin Barker, Nov 25 2014
STATUS
approved