login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250320
T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero
14
2, 5, 8, 8, 25, 8, 13, 60, 41, 24, 18, 117, 104, 161, 42, 25, 200, 233, 652, 487, 104, 32, 321, 436, 1773, 2432, 1689, 212, 41, 480, 745, 3916, 8767, 12820, 5849, 464, 50, 681, 1152, 7969, 24126, 57833, 61092, 19981, 950, 61, 940, 1733, 14452, 57305, 197848
OFFSET
1,1
COMMENTS
Table starts
....2......5.......8.......13........18.........25.........32........41
....8.....25......60......117.......200........321........480.......681
....8.....41.....104......233.......436........745.......1152......1733
...24....161.....652.....1773......3916.......7969......14452.....24293
...42....487....2432.....8767.....24126......57305.....119004....228401
..104...1689...12820....57833....197848.....558541....1357424...2953265
..212...5849...61092...363457...1559080....5237161...14866258..37065983
..464..19981..300616..2317841..12424332...50020061..166783380.476368553
..950..67459.1423966.14305925..95711098..461868677.1809575752
.1968.221953.6523576.85334033.709795516.4110975765
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -6*a(n-3) +3*a(n-4) +3*a(n-5) -2*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3
EXAMPLE
Some solutions for n=5 k=4
..2....2....4....4....0....3....1....4....2....1....4....0....4....4....2....2
..3....3....3....4....2....4....0....3....4....1....2....0....0....4....2....1
..2....0....3....1....0....0....2....0....3....0....2....2....2....3....2....1
..1....4....0....0....1....4....4....1....4....1....0....4....1....4....1....0
..4....1....1....0....3....0....2....0....3....0....2....0....3....0....3....4
..3....2....0....2....4....1....4....1....2....2....3....0....2....2....3....2
..4....3....1....0....2....2....3....4....4....4....1....4....4....0....1....3
CROSSREFS
Row 1 is A000982(n+1)
Sequence in context: A351391 A046825 A374442 * A250561 A131716 A011279
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 18 2014
STATUS
approved