login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250561
T(n,k)=Number of length n+2 0..k arrays with the sum of second differences multiplied by some arrangement of +-1 equal to zero
13
2, 5, 8, 8, 25, 14, 13, 60, 83, 32, 18, 117, 302, 297, 62, 25, 200, 761, 1516, 989, 128, 32, 321, 1648, 5105, 7126, 3113, 254, 41, 480, 3125, 13732, 31525, 30780, 9611, 512, 50, 681, 5446, 31173, 106362, 177421, 127586, 29257, 1022, 61, 940, 8843, 63400, 290909
OFFSET
1,1
COMMENTS
Table starts
....2......5.......8........13.........18.........25..........32...........41
....8.....25......60.......117........200........321.........480..........681
...14.....83.....302.......761.......1648.......3125........5446.........8843
...32....297....1516......5105......13732......31173.......63400.......117749
...62....989....7126.....31525.....106362.....290909......695890......1486139
..128...3113...30780....177421.....744564....2457921.....6924692.....17094253
..254...9611..127586....937817....4808120...18934449....62245658....176612641
..512..29257..518052...4803653...29723864..137976845...522997696...1688068993
.1022..88503.2085808..24257725..180290280..980389815..4258085394..15526286669
.2048.266769.8367220.121800949.1085927844.6899647449.34261234132.140731044189
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: [order 10] for n>15
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3
n=3: [order 21; also a quartic polynomial plus a linear quasipolynomial with period 60]
EXAMPLE
Some solutions for n=5 k=4
..0....0....1....4....4....3....4....0....3....0....1....1....1....3....0....3
..1....2....2....0....0....0....4....1....2....4....0....1....2....0....0....3
..3....2....0....3....3....0....1....3....4....4....0....2....2....1....2....1
..3....3....2....4....0....3....2....3....3....3....4....2....0....0....4....0
..1....1....1....1....1....3....4....3....0....1....3....2....2....1....0....1
..3....0....2....1....4....4....4....4....0....1....3....1....0....3....2....4
..4....0....1....3....0....1....2....1....1....3....2....3....1....4....2....0
CROSSREFS
Row 1 is A000982(n+1)
Row 2 is A250321
Sequence in context: A046825 A374442 A250320 * A131716 A011279 A185094
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 25 2014
STATUS
approved