login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero
14

%I #6 Dec 12 2014 20:32:05

%S 2,5,8,8,25,8,13,60,41,24,18,117,104,161,42,25,200,233,652,487,104,32,

%T 321,436,1773,2432,1689,212,41,480,745,3916,8767,12820,5849,464,50,

%U 681,1152,7969,24126,57833,61092,19981,950,61,940,1733,14452,57305,197848

%N T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero

%C Table starts

%C ....2......5.......8.......13........18.........25.........32........41

%C ....8.....25......60......117.......200........321........480.......681

%C ....8.....41.....104......233.......436........745.......1152......1733

%C ...24....161.....652.....1773......3916.......7969......14452.....24293

%C ...42....487....2432.....8767.....24126......57305.....119004....228401

%C ..104...1689...12820....57833....197848.....558541....1357424...2953265

%C ..212...5849...61092...363457...1559080....5237161...14866258..37065983

%C ..464..19981..300616..2317841..12424332...50020061..166783380.476368553

%C ..950..67459.1423966.14305925..95711098..461868677.1809575752

%C .1968.221953.6523576.85334033.709795516.4110975765

%H R. H. Hardin, <a href="/A250320/b250320.txt">Table of n, a(n) for n = 1..127</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -6*a(n-3) +3*a(n-4) +3*a(n-5) -2*a(n-6)

%F Empirical for row n:

%F n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2

%F n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3

%e Some solutions for n=5 k=4

%e ..2....2....4....4....0....3....1....4....2....1....4....0....4....4....2....2

%e ..3....3....3....4....2....4....0....3....4....1....2....0....0....4....2....1

%e ..2....0....3....1....0....0....2....0....3....0....2....2....2....3....2....1

%e ..1....4....0....0....1....4....4....1....4....1....0....4....1....4....1....0

%e ..4....1....1....0....3....0....2....0....3....0....2....0....3....0....3....4

%e ..3....2....0....2....4....1....4....1....2....2....3....0....2....2....3....2

%e ..4....3....1....0....2....2....3....4....4....4....1....4....4....0....1....3

%Y Row 1 is A000982(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 18 2014