login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250310
Numbers whose squares are of the form x^2 + y^2 + 3 where x >= y >= 0 (repetitions omitted).
2
2, 4, 8, 10, 14, 20, 22, 26, 32, 34, 40, 44, 46, 52, 56, 58, 64, 68, 74, 80, 86, 88, 92, 94, 98, 100, 110, 112, 118, 124, 128, 130, 134, 136, 140, 142, 146, 148, 152, 158, 164, 172, 178, 184, 190, 194, 202, 206, 208, 212, 218, 220, 230, 238, 242, 244, 250, 254, 256, 266, 268, 274, 278, 290, 296, 298
OFFSET
1,1
COMMENTS
There exists a K-class of Heronian triangles such that the sum of the tangents of their half angles is a constant K > 1, iff K^2-3 is the sum of two squares. E.g., for K = 2 (x=1, y=0) we generate the class of integer Soddyian triangles (see A034017, A210484). For K = 4 (x=2, y=3) the class generated is Heronian triangles with the ratio of r_i : r_o : r = 1 : 3 : 6 where r is their inradius and r_i, r_o are the radii of their inner and outer Soddy circles.
Also because K^2-3 is the sum of two squares it must be congruent to 1 (mod 4). Consequently K is even.
Numbers k such that k^2-3 is in A001481. - Robert Israel, Feb 05 2019
From William P. Orrick, Nov 14 2024: (Start)
Let t = z^2 + z + 1 for some nonnegative integer z, and suppose that t = r * s for some positive integers r and s with r > s. Then (x,y) = (2*z + 1,r - s) has the property that x^2 + y^2 + 3 = (r + s)^2. Hence r + s is a member of this sequence.
Given (x,y) such that x^2 + y^2 + 3 is a square, one of x and y is odd, which we can take to be x, and the other even, which we then take to be y. Let z = (x - 1) / 2. Then 4 * (z^2 + z + 1) + y^2 is an even square, which we can call q^2. Hence z^2 + z + 1 factorizes into integer factors r = (q + y) / 2 and s = (q - y) / 2. Therefore all elements of this sequence are obtained by choosing a nonnegative integer z and a factor r of z^2 + z + 1 and forming the sum r + (z^2 + z + 1) / r.
Using the notation of the preceding two comments, the 2 by 2 matrix [[-z,r],[-s,1+z]] has both determinant and trace equal to 1, implying that it is an element of the modular group of order 3. Forming the product of the order-2 matrix [[0,-1],[1,0]] with this matrix gives the matrix [[s,-1-z],[-z,r]], which has trace r + s. Since all elements of the modular group that are a product of an element of order 2 and an element of order 3 can be obtained from a matrix of the form above by conjugation, this sequence consists of the traces of elements of the modular group that can be expressed as such a product. (This ignores the sign of the trace, which is immaterial if matrices are understood to represent fractional linear transformations.)
(End)
LINKS
Frank M. Jackson and Stalislav Takhaev, Heronian Triangles of Class K: Congruent Incircles Cevian Perspective, Forum Geom., 15 (2015) 5-12.
EXAMPLE
a(4) = 10 as 10^2 - 3 = 9^2 + 4^2 and 10 is the 4th such occurrence.
MAPLE
filter:= proc(n) local F;
F:= ifactors(n^2-3)[2];
andmap(t -> t[1] mod 4 <> 3 or t[2]::even, F)
end proc:
select(filter, [seq(i, i=2..1000, 2)]); # Robert Israel, Feb 05 2019
MATHEMATICA
lst = {}; Do[If[IntegerQ[k=Sqrt[m^2+n^2+3]], AppendTo[lst, k]], {m, 0, 1000}, {n, 0, m}]; Union@lst
PROG
(Python)
from itertools import count, islice
from sympy import factorint
def A250310_gen(): # generator of terms
return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n**2-3).items()), count(2))
A250310_list = list(islice(A250310_gen(), 30)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
Sequence in context: A317626 A292550 A024895 * A288447 A087915 A088967
KEYWORD
nonn
AUTHOR
Frank M Jackson and Stalislav Takhaev, Jan 24 2015
EXTENSIONS
Edited by Robert Israel, Feb 05 2019
STATUS
approved