login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210484
Ordered areas of primitive integer Soddyian triangles.
4
12, 252, 1872, 8400, 17100, 27900, 75852, 178752, 191100, 261072, 378432, 705600, 737100, 1063692, 1343100, 1976400, 2317392, 3483900, 3820752, 4038012, 6061692, 6760512, 8822352, 9305100, 9909900, 12024012
OFFSET
1,1
COMMENTS
A Soddyian triangle is a triangle whose outer Soddy circle has degenerated into a straight line. If it is assumed that the sides a<=b<=c then, 1/Sqrt(s-c) = 1/Sqrt(s-a)+1/Sqrt(s-b) where s is the semiperimeter. All integer Soddyian triangles are Heronian. It is conjectured that a(n) has no multiplicities - checked to a(21886129).
a(n) == 0 mod 12.
LINKS
Nikolaos Dergiades, The Soddy circles, Forum Geom., 7 (2007) 191-197.
Frank M. Jackson, Soddyian triangles, Forum Geom., 13 (2013) 1-6.
FORMULA
Areas generated by m, n coprime with m >= n as area = m^2*n^2*(m+n)^2*(m^2+m*n+n^2).
EXAMPLE
a(3)=1872 given by m=3, n=1
MATHEMATICA
getpairs[k_] := (list = IntegerPartitions[k, {2}]; n = 1; acceptlist = {}; While[n <= Length[list], If[GCD[list[[n]][[1]], list[[n]][[2]]]==1, (acceptlist=Append[acceptlist, n]; n++), n++]]; Reverse[Table[list[[n]], {n, acceptlist}]]);
getlist[j_] := (newlist = getpairs[j]; Table[newlist[[m]][[1]]^2*newlist[[m]][[2]]^2(newlist[[m]][[1]]+newlist[[m]][[2]])^2(newlist[[m]][[1]]^2+newlist[[m]][[2]]^2+newlist[[m]][[1]]*newlist[[m]][[2]]), {m, 1, Length[newlist]}]);
maxLen = 15; Sort[Flatten[Table[getlist[p], {p, 2, maxLen}]]]
CROSSREFS
Subsequence of A367737.
Sequence in context: A245917 A265453 A367737 * A099139 A289565 A198475
KEYWORD
nonn
AUTHOR
Frank M Jackson, Jan 23 2013
STATUS
approved