login
A210485
Number T(n,k) of parts in all partitions of n in which no part occurs more than k times; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15
0, 0, 1, 0, 1, 3, 0, 3, 3, 6, 0, 3, 8, 8, 12, 0, 5, 11, 15, 15, 20, 0, 8, 17, 24, 29, 29, 35, 0, 10, 23, 36, 41, 47, 47, 54, 0, 13, 36, 50, 65, 71, 78, 78, 86, 0, 18, 48, 75, 91, 104, 111, 119, 119, 128, 0, 25, 69, 102, 132, 150, 165, 173, 182, 182, 192
OFFSET
0,6
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A006128(n) for k >= n.
For fixed k > 0, T(n,k) ~ 3^(1/4) * log(k+1) * exp(Pi*sqrt(2*k*n/(3*(k+1)))) / (Pi * (8*k*(k+1)*n)^(1/4)). - Vaclav Kotesovec, Oct 18 2018
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} A213177(n,i).
EXAMPLE
T(6,2) = 17: [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [2,2,1,1].
Triangle T(n,k) begins:
0;
0, 1;
0, 1, 3;
0, 3, 3, 6;
0, 3, 8, 8, 12;
0, 5, 11, 15, 15, 20;
0, 8, 17, 24, 29, 29, 35;
0, 10, 23, 36, 41, 47, 47, 54;
0, 13, 36, 50, 65, 71, 78, 78, 86;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
end:
T:= (n, k)-> b(n, n, k)[2]:
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Main diagonal gives A006128.
T(2n,n) gives A364245.
Sequence in context: A309339 A333453 A278923 * A111815 A281269 A210877
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 23 2013
STATUS
approved