login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250216
Weak irregular primes. A prime is weak irregular iff it is a Bernoulli irregular prime or an Euler irregular prime.
5
19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593
OFFSET
1,1
COMMENTS
Primes p which divide A241601(k) for some k.
MATHEMATICA
pmax = 593; m0 = 200; dm = 100;
b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
(* a1 = A241601 *) a1[0] = 1; a1[n_] := a1[n] = If[EvenQ[n], b[n/2] // Abs, c[(n - 1)/2]];
f[m_] := f[m] = Module[{}, aa = Table[a1[n], {n, 0, m}]; okQ[p_] := AnyTrue[aa, Divisible[#, p] &]; Reap[For[p = 2, p <= pmax, p = NextPrime[p], If[okQ[p], Sow[p]]]][[2, 1]]];
f[m = m0]; f[m = m + dm];
While[Print["m = ", m]; f[m] != f[m - dm], m = m + dm];
A250216 = f[m] (* Jean-François Alcover, Jul 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved