login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250201 Least b such that Phi_n(b, b-1) is prime. 2
2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 3, 2, 3, 4, 2, 6, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 4, 5, 40, 2, 3, 2, 7, 2, 5, 3, 3, 2, 13, 3, 2, 14, 4, 22, 3, 3, 13, 2, 34, 5, 3, 5, 2, 2, 34, 9, 2, 17, 7, 3, 2, 3, 18, 9, 47, 4, 20, 3, 2, 2, 8, 2, 4, 17, 6, 14, 2, 2, 61, 18, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
Phi_n(b, b-1) = (b-1)^EulerPhi(n) * Phi_n(b/(b-1)).
This sequence is not defined at n = 1 since Phi_1(b, b-1) = 1 for all b, and 1 is not prime. Conjecture: a(n) is defined for all n>1.
If b = 1, then Phi_n(b, b-1) = 1 for all n, and 1 is not prime, so all a(n) > 1.
a(n) = 2 if and only if n is in A072226.
n Phi_n(a, b)
1 a-b
2 a+b
3 a^2+ab+b^2
4 a^2+b^2
5 a^4+a^3*b+a^2*b^2+a*b^3+b^4
6 a^2-ab+b^2
... ...
n b^EulerPhi(n)*Phi_n(a/b)
LINKS
EXAMPLE
a(11) = 6 because Phi_11(b, b-1) is composite for b = 2, 3, 4, 5 and prime for b = 6.
a(37) = 40 because Phi_37(b, b-1) is composite for b = 2, 3, 4, ..., 39 and prime for b = 40.
MATHEMATICA
Table[k = 2; While[!PrimeQ[(k-1)^EulerPhi(n)*Cyclotomic[n, k/(k-1)]], k++]; k, {n, 2, 300}]
PROG
a(n) = for(k = 2, 2^16, if(ispseudoprime((k-1)^eulerphi(n) * polcyclo(n, k/(k-1))), return(k)))
CROSSREFS
Sequence in context: A058515 A126696 A244464 * A252375 A339170 A257773
KEYWORD
nonn
AUTHOR
Eric Chen, Mar 09 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)