OFFSET
1,1
COMMENTS
All terms are congruent to 2 modulo 4.
Phi_n(x) is the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nL(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, this is Phi_{2n}(2).
Let L(n) = the Aurifeuillian L-part of 2^n+1, L(n) = 2^(n/2) - 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let L*(n) = GCD(L(n), J*(n)).
This sequence lists all n such that L*(n) is prime.
LINKS
Eric Chen, Gord Palameta, Factorization of Phi_n(2) for n up to 1280
Samuel Wagstaff, The Cunningham project
Eric W. Weisstein's World of Mathematics, Aurifeuillean Factorization.
EXAMPLE
14 is in this sequence because the left Aurifeuillian primitive part of 2^14+1 is 113, which is prime.
34 is not in this sequence because the left Aurifeuillian primitive part of 2^34+1 is 130561, which equals 137 * 953 and is not prime.
MATHEMATICA
Select[Range[2000], Mod[n, 4] == 2 && PrimeQ[GCD[2^(n/2) - 2^((n+2)/4) + 1, Cyclotomic[2*n, 2]]]
PROG
(PARI) isok(n) = isprime(gcd(2^(n/2) - 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Chen, Jan 18 2015
STATUS
approved