|
EXAMPLE
|
G.f.: A(x) = 1 + 2*x - 10*x^2 + 84*x^3 - 868*x^4 + 9872*x^5 +...
The coefficients in the triangular powers of g.f. A(x) begin:
A^1: [1, 2, -10, 84, -868, 9872, -121392, 1522000, -20885744, ...];
A^3: [1, 6, -18, 140, -1416, 15768, -193960, 2369664, -33862320, ...];
A^6: [1, 12, 0, 64, -828, 9504, -128128, 1447680, -25886016, ...];
A^10:[1, 20, 80, 0, -100, 704, -37440, 83200, -15426800, ...];
A^15:[1, 30, 270, 700, 0, -1944, -28600, -627360, -19260000, ...];
A^21:[1, 42, 630, 4004, 9492, 0, -73696, -1380240, -37310112, ...];
A^28:[1, 56, 1232, 13440, 74984, 189728, 0, -3286016, -76931120, ...];
A^36:[1, 72, 2160, 34944, 329112, 1804896, 5181696, 0, -170026128, ...];
A^45:[1, 90, 3510, 77700, 1073700, 9579168, 54737280, 181761840, 0,...]; ...
Note how the coefficient of x^n in A(x)^((n+1)(n+2)/2) = 0 for n>1.
|